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In this paper, the authors formulate a free and forced vibration analysis algorithm for
frame structures using the transfer dynamic sti!ness coe$cient method. This method is
based on the concept of the transfer of the dynamic sti!ness coe$cient which is related to the
force and displacement vector at each node from the left end to the right end of the structure.
Numerical results by the transfer dynamic sti!ness coe$cient method for a space frame
structure are compared with results by the "nite element method and experiment. The
validity and the convenience of the transfer dynamic sti!ness coe$cient method in solving
dynamic problems accurately are con"rmed.
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1. INTRODUCTION

Complex and large frame-type structures are frequently used in the design of bridges,
towers, cranes, and aerospace structures. In general, in order to analyze these frame
structures, the "nite element method (FEM) has been used. However, the FEM is necessary
to use a large amount of computer memory and take a computation time as it requires
many degrees of freedom for solving dynamic problems accurately for these structures [1].
Therefore, many engineers have studied various methods [2}7] to overcome these
disadvantages, as have the authors.

Moon (one of the authors), Sueoka and Kondou have developed the transfer in#uence
coe$cient method as a method of vibration analysis with high computational e$ciency and
a high level of computational accuracy, and have con"rmed the e!ectiveness by applying it
to various important engineering structures [8}10]. However, this method cannot be
applicable to a beam structure having closed loops (the so-called Rahmen structure). And so
Kondou et al. developed the transfer sti!ness coe$cient method by introducing the concept
of the substructure synthesis method into the algorithm of the transfer in#uence coe$cient
method. They formulated the algorithm of free and forced vibration analyses by modelling
a straight-line beam structure as a lumped mass system and con"rmed the e!ectiveness
of it [11].

In this paper, we suggest a new vibration analysis algorithm; the transfer dynamic
sti!ness coe$cient method (TDSCM). This method is based on the concept of the transfer
of the dynamic sti!ness coe$cient which is related to the force and displacement vectors at
each node from the left end to the right end of the structure, and in TDSCM the member
between each node in frame structure was basically regarded as the distributed mass system.
22-460X/00/300725#12 $35.00/0 ( 2000 Academic Press



726 D. H. MOON AND M. S. CHOI
We use the relationship of state variables between each node of basic member by
introducing the concept of spectral element of Doyle [5].

We formulate the vibration analysis algorithm for frame structures by TDSCM in
this paper. And the validity of the present algorithm is demonstrated through
computational results by the TDSCM and the FEM on a personal computer, and
experimental results.

2. TRANSFER DYNAMIC STIFFNESS COEFFICIENT METHOD

2.1. MODELLING

In order to simplify a variety of frame structures which consist of continuous beam and
base support elements (springs and dampers), we consider a structure as an analytical
model, as shown in Figure 1.

The boundary conditions of the structure are considered as base support elements of the
left and the right ends of the structure. For example, in the case of the free end, it is replaced
by a spring constant of zero, and in the case of the "xed end, by a spring constant of R.

In this paper, a node is called the discontinuous point of the force vector, such as
a contact point between members, an excited point of application of external force and both
ends of the structure. We designate nodes as node(0,*), node(1,*),2, node(n,*) successively
from the left end to the right end. The mark &&*'' denotes all nodes in the >}Z plane of
Figure 1.

We consider the analytical model as a series of subsystems as shown in Figure 2. The ith
subsystem consists of four ith horizontal members, four transverse members, and four base
support elements. Members are modelled as a continuous straight beam with a constant
cross-sectional area and base support elements consist of six springs and six viscous
dampers.

It is convenient that the node is analytically divided into the left-hand side and the
right-hand side. The left-hand side of node(i,*) is the point of connection of the ith
horizontal member and the ith transverse member, and the right-hand side of node(i,*) is
a point of connection of the (i#1)th horizontal member and the ith transverse member. We
indicate quantities related with the left-hand side of node(i,*) as the head mark &&!'' on
symbols, and the right-hand side of node(i,*) without the head mark.
Figure 1. Analytical model.



Figure 2. Ith subsystem.
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2.2. ELEMENT DYNAMIC STIFFNESS MATRIX

The exact element dynamic sti!ness for the member can be found in many references
[5, 7]. The element dynamic sti!ness matrices A

i
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i
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i
, D

i
of equation (1) catches the

relationship between the force vectors fL,R
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a continuous beam element in Figure 3 [5]. And the explicit form for the element dynamic
sti!ness matrix is given in Appendix A.

The subscript &&i '' indicates the quantity of the ith member or node(i,*) and the
superscripts &&¸'' and &&R'' express the quantity of the left- and right-hand side of the
member:
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2.3. TRANSFER OF DYNAMIC STIFFNESS COEFFICIENT MATRIX

We de"ne the relationship between force and displacement vector at left- and right-hand
side of node(i,*) as follows:
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Figure 3. De"nition of the direction of state variables.
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We call S1
i
and S

i
as the dynamic sti!ness coe$cient matrices (24]24) of the left- and the

right-hand side of the node(i,*) and E1
i
and E

i
as the force corrective vectors (24]1) of the

left- and the right-hand side of node(i,*).
The relationship of the total force and displacement vectors at the right-hand side of

node(i!1,*) and at the left-hand side of node(i,*), applying equation (1) for each member, is
the following:
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If we obtain the dynamic sti!ness coe$cient matrix S
i~1

and the force corrective vector
E
i~1

of the right-hand side of node(i!1,*), we can derive the dynamic sti!ness coe$cient
matrix S1

i
and the force corrective vector E1

i
of the left-hand side of node(i,*) from equations

(2), (5), and (3) into which i"i!1 has been substituted as follows:
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where
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If node(i, 1) is excited by harmonic external force Q
(i,1)

, the equilibrium equation of the
dynamic force vector at node(i, *) is the following:
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where R and R@ are matrices which transform local co-ordinates of transverse members 5, 7
and 6, 8 into the global co-ordinates, and (A,B,C,D)

5,6,7,8
are submatrices of the element

dynamic sti!ness matrix of transverse members 5, 6, 7 and 8.
We can derive the dynamic sti!ness coe$cient matrix S

i
and the force corrective vector

E
i
at the right-hand side of node(i,*) from equations (2), (3), and (9):
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Therefore, if we take the dynamic sti!ness coe$cient matrix S
i~1

and the force corrective
vector E
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at the right-hand side of node(i!1,*), we can obtain the dynamic sti!ness

coe$cient matrix S
i
and the force corrective vector E
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from equations (7), (11) are as follows:
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Because the boundary condition of the left end is modelled as the base support element at
node(0,*), force vector F1

0
at the left-hand side of node(0,*) is a null vector. We can "nd

matrix S
0

and vector E
0

from the equilibrium equation of the force vector at node(0,*) and
equation (3) into which i"0 has been substituted as follows:

S
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Next, matrix S
i

and vector E
i

at node(i,*) are computed from equations (12) and (13)
for i"1, 2,2, n. Finally, we can "nd the dynamic sti!ness coe$cient matrix S

n
and the

force corrective vector E
n

of the right-hand side of node(n,*), that is, the right end of the
structure.

2.4. FORCED VIBRATION ANALYSIS

Because we consider the boundary condition of the right end of the structure as the base
support element of node(n,*), the right-hand side of node(n,*) can be considered as being
analytically free, that is, F

n
"0, U
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as follows:
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(i"0, 1,2, n!1) are computed from equations

(2) and (3).

2.5. FREE VIBRATION ANALYSIS

In free vibration analysis, it is not necessary to transfer the force corrective vector; only
the transfer of the dynamic sti!ness coe$cient matrix is required. As the right-hand side of
node(n,*) can be considered analytically as being free, that is, F

n
"0, U

n
O0.

From F
n
"0, U

n
O0 and equation (3) excepting the force corrective vector term for

i"n, the frequency equation is as follows:

detS
n
"0. (16)

We can obtain the natural frequency from equation (16) and matrix S
n
of equation (16) is

computed through equation (12). In computation process of matrix S
i
of equation (12), we

have to "nd the inverse matrix of G
i
. In this case, if the determinant of matrix G

i
is zero,

elements of matrix S
i
become usually asymmetric poles that change their sign before and

after the poles of elements. It may not be easy to compute matrix S
i`1

of node i#1 by
equation (12). Therefore, elements of matrix S

n
may contain the asymmetric poles and then

numerical instability may occur in computation process of the frequency equation (16). As
a result, we may obtain the false roots (asymmetric poles) as the true roots (natural
frequencies). These false roots must be eliminated by applying the following technique as
described in the previous report [8, 9]. This technique introduces the sign function to
eliminate the asymmetric pole which may occur in solving equation (12) at each node.



TRANSFER DYNAMIC STIFFNESS COEFFICIENT METHOD 731
The sign function Z of equation (17) means that the asymmetric poles are all transformed
into symmetric poles by multiplying sgn(detS

n
) by the sign functions of sgn(detG

i
)

(i"1, 2, 3,2, n).

Z"

n
<
i/1

sgn(detG
i
) sgn(det S

n
). (17)

Consequently, we obtain only the true roots by applying the bisection method to
equation (17), as the bisection method necessitates only the sign of the value of the function.
Because the natural frequency of the structure is generally a single root, the zeros (natural
frequencies) of equation (16) are assumed to be zero points of the "rst order. We cannot "nd
a few natural frequencies when two roots are very close to each other, but these are obtained
by varying the natural frequency in small steps.

The characteristic modes are computed from the right end to the left end successively
using equation (18) after the displacement vector of node(n,*) has been obtained:

U
i~1

"V
i
U

i
. (18)

3. NUMERICAL EXAMPLES AND DISCUSSION

We used MATLAB language in programming and computed natural frequencies and
frequency}responses for the computational model of Figure 4 on a personal computer. In
order to compare with the other method, we carried out the same computation by using the
NISA II [12], which is based on the FEM.

The data for all members of the frame structure in Figure 4 are given in Table 1. Table
2 indicates the natural frequencies for the computational model by using the FEM, the
TDSCM, and experiment. Parentheses in the table show the size of the matrix needed to
solve eigenvalues problem on the FEM, and the size of matrix S

n
to solve the frequency
Figure 4. Computational model.



TABLE 1

Computational model data

Length of member element (l) 250 mm
Width of member element 10 mm
Thickness of member element 10 mm
Mass density (o) 7)69474]103 kg/m3
Young's modulus (E) 2)06]1011 N/m
Shear modulus (G) 7)9231]1010 N/m
The Poisson ratio (l) 0)3

Figure 5. Frequency}response of computational model by TDSCM: *}, X; } } }, >; - - - -, Z.
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equation on the TDSCM. The experiment was carried out by using an FFT analyzer, an
impact hammer and a triaxial accelerometer.

We con"rmed that the results of the FEM II (504 DOFs), better than those of the FEM I
(144 DOFs), approximately agreed with those of the TDSCM. It is the reason why the
TDSCM is modelled by a continuous system, and the FEM by a discrete system. And the
FEM II has the matrix size of 504]504 in solving the eigenvalue problem for the present
model in limit frequency region. On the other hand, if we use the TDSCM, the matrix size of
the dynamic sti!ness coe$cient matrix S

n
is only 24]24. Therefore, the TDSCM is superior

to the FEM in computational e$ciency owing to saving of computation time and using
memory of computer in the case of solving the dynamic problem for complex and large
structures on a personal computer.
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When the harmonic external force is given to Z direction at node(4,3) in Figure 4, Figure
5 shows the frequency}response curves of X, > and Z directions at node(0,1) by using the
TDSCM. The amplitude of the harmonic external force is 1 N and the forced frequencies are
0)1, 0)2,2, 100 Hz. The resonant frequencies of the frequency}response curves using the
TDSCM coincide with the natural frequencies of Table 2.

Table 3 indicates the frequency}response of > direction at node(0,1) in Figure 4 using the
FEM and the TDSCM. The excited frequencies are 1, 10, 20,2, 100 Hz. The results of the
FEMS50T, which are computed with 1st}50th natural modes of the FEM II, rather than
those of the FEMS10T with 1st}10th natural modes, are very similar to those of the
TDSCM. We con"rmed that the results of the FEM which consider many natural
modes approximate to those of the TDSCM. However, we already con"rmed in the FEM
I of Table 2 that the results of the FEM are not accurate in "nding the high natural
frequencies.
TABLE 3

Comparison of frequency}responses for computational model (mm)

Frequency FEMS10T FEMS50T TDSCM

1 4)540E!4 4)865E!4 4)866E!4
10 1)775E!3 1)743E!3 1)747E!3
20 4)410E!3 4)376E!3 4)376E!3
30 9)690E!4 9)341E!4 9)340E!4
40 1)057E!3 1)020E!3 1)020E!3
50 9)763E!3 9)723E!3 9)744E!3
60 3)241E!3 3)285E!3 3)286E!3
70 1)807E!3 1)757E!3 1)755E!3
80 6)120E!3 6)177E!3 6)103E!3
90 4)181E!5 2)161E!5 2)183E!5

100 2)189E!4 1)826E!4 1)812E!4

TABLE 2

Comparison of natural frequencies for computational model (Hz)

Order FEM I FEM II TDSCM Experiment
(144]144) (504]504) (24]24)

1 10)811 10)810 10)809 10)9
2 15)812 15)811 15)811 15)6
3 17)752 17)750 17)750 17)6
4 32)731 32)721 32)721 32)5
5 51)216 51)186 51)183 50)4
6 64)814 64)742 64)738 65)1
7 68)771 68)686 68)683 68)3
8 79)673 79)540 79)535 79)7
9 93)891 93)687 93)677 94)0

10 95)845 95)669 95)658 96)4
20 164)54 163)72 163)66 164)5
30 421)15 380)33 379)16 *

40 487)49 426)89 425)05 *

50 620)38 510)66 507)48 *
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Therefore, it is very di$cult for a person who is not a specialist in the FEM to select
a suitable partition number of members for accurate eigenvalue analysis and a suitable
number of modes for frequency}response analysis. On the other hand, if one uses the
TDSCM for vibration analysis of complex and large frame structures, it is very simple to
solve dynamic problems accurately.

4. CONCLUSION

The authors formulated a free and forced vibration analysis algorithm for frame
structures using the transfer dynamic sti!ness coe$cient method.

Numerical results for the frame structure by the transfer dynamic sti!ness coe$cient
method on a personal computer were compared with results by the "nite element method
and experimental results. As a result, the validity and the convenience of the transfer
dynamic sti!ness coe$cient method in solving dynamic problems of complex and large
frame structures accurately were con"rmed.
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APPENDIX A

If a member is modelled as a Euler beam, the submatrices A, B, C, D are as follows:
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The bending dynamic sti!ness matrices A@, B@, C@, D@ are as follows:
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a"(cos e sinh e#sin e cosh e) e3/ddet,

a6 "(sin e#sinh e) e3/ddet,

b"(!cos e sinh e#sin e cosh e) e/ddet,

bM "(!sin e#sinh e) e/ddet,

c"(!cos e#cosh e) e2/ddet,

c6 "(sin e sinh e) e2/ddet,

ddet"(1!cos e cosh e), e"lSu S
k

E@I
,

G@"E@/2(1#l), E@"E(1#jg),

where u is the natural angular frequency, l is the length of a member, k is the linear density,
A is the cross-sectional area, I is the moment of inertia, I

p
is the polar moment of inertia,

G is the shear modulus, l is the Poisson ratio, E is the Young's modulus, g is the structural
damping coe$cient, E@(G@) is the complex Young's (shear) modulus.
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